Latest news

Resonance curve - the case of pedestrian laoding on structures

Resonance is one of fundamental concepts in structural dynamics. In simple terms, it occurs if a periodic force is applied to the (structural) system at or near one of its natural frequencies. This leads to the amplification of the response relative to the case when no resonance occurs. The consequences of this phenomenon can be severe, from accelerated degradation of the structure, lack of fitness for its purpose, to the catastrophic failure. Therefore, understanding this phenomenon is of critical importance to any engineer.

Dynamic performance verification of the Rędziński Bridge using portable camera-based vibration monitoring systems

Monitoring evolving patterns of the dynamic behaviour of long-span bridges is a critical task in their maintenance and management. For the bridges lacking permanent monitoring systems, ad hoc testing campaigns are sometimes implemented. These are typically costly and utilise wired instrumentation systems requiring a direct contact with the structure, hence they can create risks to the involved personnel and equipment. An alternative solution is explored in our newest paper, reporting successful attempts at obtaining modal damping based on data from optical motion capture systems.

A methodological approach towards evaluating structural damage severity using 1D CNNs

Monitoring civil infrastructure simplifies and improves reliability of decision-making in asset management. This task is increasingly important in established economies, in which engineering infrastructure has aged thus becoming exposed to various risks affecting structural integrity. In the latest paper, driven by our friends at the University of Leeds, we have explored the performance of 1D CNN in structural damage detection based on numerical simulations.

Performance of camera-based vibration monitoring systems in input-output modal identification using shaker excitation

A complete dynamic characterisation of structures requires modal frequency, mode shape, modal damping and modal mass to be established for each mode. This can be achieved by using experimental modal analisis (EMA). EMA requires an input force and the resulting structural response to be measured. Optical vibration monitoring systems, enabling remote sensing, could make this process less challenging. This very issue was explored in our latest paper.

Performance of optical structural vibration monitoring systems in experimental modal analysis

A considerable research effort has been spent in recent years on the development of machine vision techniques for structural vibration monitoring. However, experimental modal analysis relying on the measurement of input force and the resulting structural response towards the full dynamic characterisation of structures has not been previously investigated in this context. In our recent paper we have explored the performance of optical vibration monitoring systems in experimental modal analysis in which the excitation force comes from an instrumented hammer.

Gait adaptations in walking with a virtual reality avatar

Virtual reality can be a powerful tool enabling human locomotion studies, assuming it offers ecological validity against real-world settings. In our latest paper we have provided some of the first evidence for the applicability of virtual reality in research on pedestrian gait coordination while overground walking in dyads.